

Journal of Nonlinear Analysis and Optimization

Vol. 15, Issue. 2, No.1 : 2024

ISSN : 1906-9685

AN ANDROID APPLICATION IS MALWARE INFECTED OR NOT DETECTING USING

DEEP LEARNING

Harish M Student, III Year (Digital Cyber Forensic Science) Rathinam College of Arts and Science,

Coimbatore-21

Dr.M. UshaDevi Msc.,M.Phil.,Ph.D.,NET Assistant Professor Department of Information

Technology Rathinam College of Arts and Science, Coimbatore–21

ABSTRACT

Android has become the most standard smart phone operating system. The rapidly growing acceptance

of android has resulted in significant increase in the number of malwares when compared with earlier

years. There exists plenty of antimalware programs which are designed to efficiently protect the user’s

sensitive data in mobile systems from such attacks. Here, I have examined the different android

malwares and their methods based on deep learning that are used for attacking the devices and antivirus

programs that act against malwares to care for Android systems. Then, discuss on different deep

learning based android malware detection techniques such as, Maldozer, Droid Detector, Droid Deep

Learner, Deep Flow, Droid Delver and Droid Deep. The aim of the project is to implement a model

based on deep learning that can automatically identify whether an android application is malware

infected or not without installation. The proposed framework can be integrated into existing anti-

malware solutions to enhance their capabilities in detecting Android malware.

OVERVIEW

In our daily life Mobile Applications have become an essential part since countless facilities

are providing to us by using Mobile Apps. It will change the way of communication, as the apps are

installed on most of the smart devices. Mobile devices have refined sensors like cameras, gyroscopes,

microphones and GPS.

These several sensors open up entire innovative world of applications for the users and create

massive quantities of data containing highly complex data. Security solutions are therefore needed to

defend operators from malicious applications that exploit the complexity of smart devices and their

complex data.

Android OS physically grows through the power of a wide range of smart devices. In mobile

computing industry, it has largest part with 85% in 2017 due to its vulnerable source distribution Every

Android application need to ask the user for the permission to execute certain task on Android devices,

such as transfer SMS message, during the installation process. Most of the users are allow the

permission without even considering what kinds of permissions they demand thus the Android

permission system is knowingly weaken.

DEEP LEARNING

Deep learning is actually a subset of machine learning. It technically is machine learning and

functions in the same way but it has different capabilities.

The main difference between deep and machine learning is, machine learning models become

well progressively but the model still needs some guidance. If a machine learning model returns an

inaccurate prediction then the programmer needs to fix that problem explicitly but in the case of deep

learning, the model does it by him. Automatic car driving system is a good example of deep learning.

40 JNAO Vol. 15, Issue. 2, No.1 : 2024

OBJECTIVE OF THE PROJECT

The objective of Android malware detection is to identify and mitigate the threat posed by

malware on Android devices. Android malware can take many forms, including trojans, viruses,

adware, and spyware, and can have serious consequences for users, including data theft, financial loss,

and privacy violations.

The goal of Android malware detection is to develop effective methods and tools

for detecting and removing malware from Android devices, thereby protecting users from the potential

harm caused by malware.

Effective Android malware detection can be achieved through a combination of

techniques, including static and dynamic analysis, signature-based detection, behavioral analysis, and

machine learning. By detecting and mitigating Android malware, we can help ensure the security and

privacy of Android device users.

1. Develop a framework that can effectively detect Android malware using a combination of static and

dynamic analysis techniques.

2. Evaluate the effectiveness of the framework using a dataset of real-world Android malware samples.

3. Integrate the framework into existing anti-malware solutions to enhance their capabilities in

detecting Android malware.

4. Explore the use of machine learning algorithms to enhance the accuracy of the detection framework.

5. Provide a tool that can help protect Android device users from the potential harm caused by

malware.

SYSTEM STUDY AND ANALYSIS

DRAWBACKS OF EXISTING SYSTEM

Traditionally Numerous malware detection tools have been developed, but some tools are may

not able to detect newly created malware application and unknown malware application infected by

various Trojan, worns, spyware Detecting of large number of malicious application over millions of

android application is still a challenging task using traditional way. In existing, Non machine learning

way of detecting the malicious application based on characteristics, properties, behavioral.

Limited detection capability Many existing systems rely on signature-based detection, which

only detects known malware. As a result, they are unable to detect new and unknown malware. False

positives Some systems may flag legitimate apps as malware, resulting in false positives. This can lead

to users uninstalling legitimate apps or ignoring alerts in the future.Performance impact Some

detection systems can negatively impact device performance, leading to slower response times and

reduced battery life.

Drawbacks

• Identification of newly updated or created malicious application is hard to find out.

• Non Machine learning approaches are not reliable and efficient

• In Existing approaches covers only 30 permissions out of 300 app permissions, due to this

limited apps permissions different types of attacks can occurs.

ADVANTAGE OF PROPOSED SYSTEM

In this project,the proposed system is based on Convolutional Neural Network with

deep learning for classification.This algorithm inspired by biological neural networks (where the brain

is considered particularly important in the central nervous system) and are used in statistics and

cognitive science. Theseare represented by the interconnection of neural systems from various input

variables to the output, and it can be represented as mathematical functions that are configured to

represent complex relationships between inputs (independent variables) and outputs (dependent

variables).

Enhanced detection capabilities A proposed system may incorporate advanced detection

techniques such as behavior-based analysis, machine learning, or artificial intelligence to detect new

and unknown malware that may have evaded traditional signature- based detection.Lower false

positives A proposed system may use more sophisticated algorithms and techniques to minimize the

number of false positives, reducing the risk of users uninstalling legitimate apps or ignoring

alerts.Minimal performance impact A well-designed proposed system may have minimal impact on

41 JNAO Vol. 15, Issue. 2, No.1 : 2024

device performance, allowing users to continue using their devices without experiencing significant

slowdowns or battery drain.

ADVANTAGES:

• Improves the percentages of detection malicious application.

• Deep learning is better efficient than Non machine learning algorithm.

• Able to detect new malware android applications.

• We only need to consider 22 out of409 permissions to improve the runtime performance upto 91 %.

2.3MODULE

MODULES

1.NUMPY

2. PANDAS

3. SKLEARN

4. KERAS

5. TENSORFLOW

6. FLASK

1.NUMPY:-

NumPy is a Python package. It stands for ' Numerical Python'. It is a library consisting of

multidimensional array objects and a collection of routines for processing of array.

Numeric, the ancestor of NumPy, was developed by Jim Hugunin.

Another package NumArray was also developed, having some additional functionalities. In

2005, Travis Oliphant created NumPy package by incorporating the features of Numarray into Numeric

package. There are many contributors to this open source project.

Operations using NumPy

Using NumPy, a developer can perform the following operations − Mathematical and logical

operations on arrays.

 Fourier transforms and routines for shape manipulation.

 Operations related to linear algebra. NumPy has in-built functions for linear algebra and random

number generation.

NumPy – A Replacement for MatLab

NumPy is often used along with packages like SciPy (Scientific Python) and

Mat−plotlib (plotting library). This combination is widely used as a replacement for MatLab, a popular

platform for technical computing. However, Python alternative to MatLab is now seen as a more

modern and complete programming language.

PANDAS

Pandas is an open-source, BSD-licensed Python library providing high- performance, easy-to-use data

structures and data analysis tools for the Python programming language. Python with Pandas is used

in a wide range of fields including academic and commercial domains including finance, economics,

Statistics, analytics, etc. In this tutorial, we will learn the various features of Python Pandas and how

to use them in practice.

SKLEARN

Scikit-learn is a machine learning library for Python. It features several regression, classification and

clustering algorithms including SVMs, gradient boosting, k- means, random forests and DBSCAN. It

is designed to work with Python Numpy and SciPy . The scikit-learn project kicked off as a Google

Summer of Code (also known as GSoC) project by David Cournapeau as scikits.learn. It gets its name

from “Scikit”, a separate third- party extension to SciPy.

KERAS

Keras is a high-level neural networks API, capable of running on topof Tensorflow , Theano, and

CNTK . It enables fast experimentation through a highlevel, user-friendly, modular and extensible API.

Keras can also be run on bothCPU and GPU. Keras was developed and is maintained by Francois

Chollet and ispart of the Tensorflow core, which makes it Tensorflows preferred high-level API. Keras

42 JNAO Vol. 15, Issue. 2, No.1 : 2024

including the two most used Keras models (Sequential and Functional), the core layers as well as

some preprocessing functionalities.

TENSORFLOW

TensorFlow is an open-source end-to-end platform for creating Machine Learning applications. It is a

symbolic math library that uses dataflow and differentiable programming to perform various tasks

focused on training and inference of deep neural networks. It allows developers to create machine

learning applications using various tools, libraries, and community resources.

FLASK:

What is Flask?

Flask is an API of Python that allows us to build up web-applications.

It was developed by Armin Ronacher. Flask’s framework is more explicit than

Django’s framework and is also easier to learn because it has less base code to implement a simple

web-Application.

A Web-Application Framework or Web Framework is the collection of modules

and libraries that helps the developer to write applications without writing the low-level codes such as

protocols, thread management, etc. Flask is based on WSGI(Web Server Gateway Interface) toolkit

and Jinja2 template engine.

VALIDATION TESTING

Validation testing is an important part of the software development process and can help ensure that

an Android malware detection system is effective and meets user requirements. Some possible

validation tests for an Android malware detection system could include:

1. User acceptance testing: This test would involve providing the system to a group of users and

soliciting feedback on its effectiveness, ease of use, and overall user experience. The feedback could

be used to make improvements to the system and ensure that it meets user requirements.

2. Performance testing: This test would involve measuring the system's performance under various

scenarios and workload conditions. The goal would be to ensure that the system can handle a range of

malware threats and continue to function efficiently without causing any significant impact on device

performance.

3. Security testing: This test would involve verifying that the system is secure and does not

compromise user data or device information. The test would include testing the system's encryption,

authentication, and authorization mechanisms to ensure that they are functioning as intended.

4. Compliance testing: This test would involve verifying that the system complies with relevant

regulations and industry standards. For example, the system may need to comply with data protection

laws and regulations to ensure that user data is protected.

OUTPUT TESTING

Output testing in an Android malware detection system is essential to ensure that the system's output

is accurate, complete, and reliable. Some possible output testing methods for an Android malware

detection system could include:

1. Sample testing: This method involves testing the system's output on a sample set of malware and

non-malware files. The test would involve providing the system with a set of known malware and

legitimate files, and verifying that the system correctly identifies the malware and marks the legitimate

files as safe.

2. Performance testing: This method involves measuring the system's output performance in terms of

speed, accuracy, and efficiency. The test would involve analyzing the system's response time and

processing speed, as well as the accuracy of its detection results.

3. False positive testing: This method involves testing the system's output for false positives. The test

would involve providing the system with legitimate files and verifying that it does not flag them as

malware.

1. This test would verify that the system can be installed and uninstalled on Android devices without

any issues.

43 JNAO Vol. 15, Issue. 2, No.1 : 2024

2. Compatibility testing: This test would verify that the system is compatible with different versions

of the Android operating system and various types of devices.

3. User interface testing: This test would verify that the system's user interface is intuitive, easy to use,

and provides users with the information they need to protect their devices from malware threats.

4. Functionality testing: This test would verify that the system's functions and features are working

correctly, including signature-based detection, behavior-based detection, real-time protection, and

malware removal.

5. Performance testing: This test would verify that the system is functioning efficiently and without

causing any performance issues on the device. The test would involve measuring the system's resource

usage, such as CPU usage, memory usage, and battery consumption, under different scenarios and

workload conditions.

6. Security testing: This test would verify that the system is secure and does not compromise user data

or device information. The test would include testing the system's encryption, authentication, and

authorization mechanisms to ensure that they are functioning as intended.

7. Integration testing: This test would verify that the system integrates seamlessly with other software

and hardware components in the Android ecosystem. The test would involve verifying that the system

can work effectively with other security software or mobile device management systems to protect

devices against malware threats.

28

Acknowledgment

This article / project is the outcome of research work carried out in the Department of

Computer Science under the DBT Star College Scheme. The authors are grateful to the Department

of Biotechnology (DBT), Ministry of Science and Technology, Govt. of India, New Delhi, and the

Department of Computer Science for the support.

BIBLIOGRAPHY:

1. Smith, J. "Enhancing User Engagement in ATM Authentication: A Front-End Puzzle Number Pad

Approach." Proc. Int. Conf. on HCI, 2020.

2. Johnson, E. "Interactive Interfaces for ATM Authentication: Designing Engaging User

44 JNAO Vol. 15, Issue. 2, No.1 : 2024

Experiences." J. User Exp. Design, 5.3, 2019.

3. Patel, R. "Innovative Approaches to ATM Security: Leveraging Gamification in PIN Entry." Int. J.

of Info. Sec., 12.2, 2021.

4. Brown, S. "Improving User Interaction with ATM Systems: A Case Study of Puzzle- Based

Authentication." Proc. ACM CHI, 2018.

5. Lee, D. "Designing Secure and User-Friendly ATM Interfaces: A Human-Centered Approach." J. of

HCI, 8.4, 2020.

6. Nielsen, M. "Usability Engineering for ATM Systems: Principles and Best Practices." Addison-

Wesley, 2021.

7. Garcia, M. "Enhancing ATM Security with Biometric Authentication: A Comparative Study of User

Acceptance." Int. J. of HCI, 15.1, 2019.

8. Thompson, J. "Designing Effective Error Feedback Mechanisms for ATM Interfaces." Proc. ACM

CHI, 2017.

9. Kim, S. "Exploring the Role of Gamification in ATM Security Awareness: A User- Centered Design

Approach." J. of Cybersec. Educ., 3.2, 2018.

10. Williams, M. "Usability Testing of ATM Interfaces: Methods, Challenges, and Best Practices." J.

of Usability Stud., 7.3, 2020.

